OPERATIONAL IDENTITIES ON GENERALIZED TWO-VARIABLE CHEBYSHEV POLYNOMIALS
نویسندگان
چکیده
منابع مشابه
Polynomials Related to Generalized Chebyshev Polynomials
We study several classes of polynomials, which are related to the Chebyshev, Morgan-Voyce, Horadam and Jacobsthal polynomials. Thus, we unify some of well-known results.
متن کاملGeneralized Chebyshev polynomials of the second kind
We characterize the generalized Chebyshev polynomials of the second kind (Chebyshev-II), and then we provide a closed form of the generalized Chebyshev-II polynomials using the Bernstein basis. These polynomials can be used to describe the approximation of continuous functions by Chebyshev interpolation and Chebyshev series and how to efficiently compute such approximations. We conclude the pap...
متن کاملThe Operational matrices with respect to generalized Laguerre polynomials and their applications in solving linear dierential equations with variable coecients
In this paper, a new and ecient approach based on operational matrices with respect to the gener-alized Laguerre polynomials for numerical approximation of the linear ordinary dierential equations(ODEs) with variable coecients is introduced. Explicit formulae which express the generalized La-guerre expansion coecients for the moments of the derivatives of any dierentiable function in termsof th...
متن کاملOn integer Chebyshev polynomials
We are concerned with the problem of minimizing the supremum norm on [0, 1] of a nonzero polynomial of degree at most n with integer coefficients. We use the structure of such polynomials to derive an efficient algorithm for computing them. We give a table of these polynomials for degree up to 75 and use a value from this table to answer an open problem due to P. Borwein and T. Erdélyi and impr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Pure and Apllied Mathematics
سال: 2015
ISSN: 1311-8080,1314-3395
DOI: 10.12732/ijpam.v100i1.6